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LElTER TO THE EDITOR 

Ground-state logarithmic perturbation theory applied to 
the Klein-Gordon equation? 

C S Lai 
Department of Physics, University of Prince Edward Island, Charlottetown, Prince Edward 
Island, Canada C1A 4P3 

Received 4 January 1982 

Abstract. Three-dimensional ground-state logarithmic perturbation theory in non rela- 
tivistic quantum mechanics is applied to the Klein-Gordon equation. The problem of the 
a-mesic atoms in an external multiple field is treated in this framework. 

A logarithmic perturbation theory for a discrete spectrum in non-relativistic quantum 
mechanics has recently been developed by Dolgov and Popov (1978, 1979) and 
Aharonov and Au (1979). In particular, Au and Aharonov (1979) have shown that 
the ground-state logarithmic perturbation theory can be extended to the three- 
dimensional problems. Using this technique, they have calculated the first-order 
correction to the wavefunction and the second-order energy shift for a hydrogen atom 
in an external multiple field (Dalgarno and Lewis 1955, Bell 1967), and established 
the connection with Stemheimer's method (1951) and the method of Dalgarno and 
Lewis (1955). 

It is the purpose of this letter to point out that the three-dimensional 
logarithmic perturbation theory can be extended to a relativistic case in which the 
Klein-Gordon equation is used. We will use this technique to establish the connection 
with Sternheimer's method in the Klein-Gordon equation. We will also calculate the 
second-order energy shift for a .rr-mesic atom (Corinaldesi and Strocchi 1963) in a 
2lth-order multiple field of the form VI = Qs'+"Pl(cos e), where Q1 is the strength of 
the multiple field and E is a relativistic correction factor to be determined. 

The Klein-Gordon equation in units h = e = M = 1 can be written as (Schiff 1968) 

(-v'+ c')t,+(r) = C'(E - v)2#(r), (1) 

where the potential is most generally given in terms of the perturbation 
parameter A 

00 

V(r)= 1 & A ' =  Vo+AVi+A2V2+ . . . . (2) 

We only consider ground states in which the wavefunction t,+(r) can be put in the 
form (Au and Aharonov 1979) 

i=O 

t,+(r) = exp[-W)l. (3) 
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the Klein-Gordon equation (1) becomes 

V * g - g 2  = L 2 { E  - V ) 2  - c 2 .  ( 5 )  

We assume here that the energy E and the functions G(r) and g(r )  can be expanded 
as power series of A, 

m 

G = GiA' = Go+AG1+A2G2+ . . . , 
r = l  

00 

g = c g,A' =go+Ag1+A2g2+ . . . , 
i=1  

m 

E =  EiA'=Eo+AE1+A2Ez+ . . . ,  
r=l  

(7 )  

where Eo is the unperturbed eigenenergy, and the unperturbed wavefunction i,bo is 
related to Go by 

40 = exp(-Go). (9) 

If we compare the coefficients of various powers of A in equation ( 5 ) ,  we obtain 
the following set of differential equations for g i :  

V . g , - g g = ~ - ~ ( E o -  V O ) ~ - C ~ ,  (10) 

V * g i  -2go g i  = (2/c2)(Eo- Vo)(Ei- V I ) ,  

V .gz -2go .gz=(2 /c2 ) (Eo-  Vz)+g1 *g1+c2(Ei -  V1I2, ( 1 2 )  

(11) 

v * gi -2g0 * gi 
1-1 2 

C j = 1  
=-(Eo- Vo)(Ei- Vi)+ 1 gj ' g i - j  

(13) 

where the unperturbed Klein-Gordon equation (1 1) is assumed to have exact solutions. 
We see from equations (12)-(13) that they all have the same structure and may be 
able to be solved in the same manner. It is observed (Aharonov and Au 1979) that 
the square of the unperturbed wavefunction 

(14) 

constitutes an integrating factor for equations (12)-(  1 3 ) .  Multiplying equation ( 1 2 )  
by the integrating factor and integrating over all space, we obtain 

2 p = t,bo = exp(-2Go) 

2 1 (Eo - Vo)(E1- V1)p d3r = 5 V * ( g l  d3r = 0. 
C 

From equation (15), we find for the first-order energy coefficient El  

E1 =N VI(E0- V0)p d3r, 'I (16) 
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where the normalisation factor is N = (EO- VO)~ d3r. In a similar manner, the 
ith-order energy coefficient Ei can be found as 

(17) 
We note here that, in the non-relativistic limit c + 00, equations (16) and (17) reduce 
to the results obtained by Au and Aharonov (1979). 

By following the same procedure as done for the Schrodinger equation by Au and 
Aharonov (1979), we establish the connection with Sternheimer's method (195 1) in 
the Klein-Gordon equation. From equation (3), we obtain for the first-order correction 
to the wavefunction 

(18) 

(19) 

(20) 

+l = -G1 e-Go = - Gl$o. 
Taking the Laplacian of G1, we find 

V21(11 = -VZ(G1 e-Go) = (L1[V2Go - (VGo)2] - +o(V2G1 - 2VGo VG1). 

With the aid of equations (11) and (12), equation (19) can be rewritten as 

-[vz + (l/c2>(Eo - vo)2 - c21+1= (2/c2)(E0 - Vo)(E1 - Vl)+O. 
Equation (20) is the Sternheimer equation, when the Klein-Gordon equation is used 
instead of the Schrodinger equation. Using the same argument, we can obtain, from 
equation (13), the following generalised Sternheimer equation: 

-( V2 +$(Eo - V0)' - c') Gir(r0 

where V, is the ith-order potential coefficient in A .  Because of the vector nature of 
gi = VGi in the three-dimensional problems, equations (20) and (21) may not be easily 
solved. 

As one application of the above relativistic perturbation theory, we calculate the 
first-order correction to the wavefunction and the second-order energy shift of a 
.rr-mesic atom (Corinaldesi and Strocci 1963) in an external multiple field. This 
problem in the non-relativistic case has been treated by Dalgarno and Lewis (1955) 
and Bell (1967). It is also discussed by Au and Aharonov (1979) in the framework 
of the logarithmic perturbation theory. The perturbation interaction Vl for a +mesic 
atom in a 2lth-order multiple field should be written as 

vl = Qfd+s~f(cos e), (22) 
where QI is the strength of the interaction, and E is a relativistic correction factor to 
be determined from equation (12). Under this perturbation, equation (22) becomes 

(23) 
where y = Z/c,  2 is the charge of the nucleus, and the unperturbed value Eo for the 
ground state is given by (Schiff 1968) 

V'G1 - 2VGo * VG1= - (2/c2)(E0/c + y/r)Qir'+"Pi(cos e), 

s = - $ + ( $ - y )  2 112 . E -  
o - [1+ y2/ (s  + 1)2]1/2' 
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For a Ir-mesic atom with nuclear charge 2 in the ground state, the function Go is 
given by (Schiff 1968) 

1 / 2 r  - s In r +constant = br - s In r + constant (25) 
2 

Go = 
[(s+1)2+Y 1 

where b = Z/[(s + 1)’+ y2]’”. The gradient of Go is then 

VGo = (6 - s/r)ir. 

We see from equation (23) that Gl(r) must take the form 

Gl(r)  = R(r)A(cos 0 )  = (u(r)/r)A(cos e) .  (27) 

Substituting equations (26) and (27) into (23), we obtain the following inhomogeneous 
equation for u ( r ) :  

(28) 
d2 u - - 2 ( b r - s ) - - ( - ) - 7 u  d U / ( I+  1) = -- 2E0Qir I+ 1 + E  ~ Y Q I ,  I + E  

dr2 dr r r c 2  c 

As y+O in the non-relativistic limit, equation (28) reduces to the known non- 
relativistic equation (Au and Aharonov 1979). 

The particular solution for equation (28) can be written as 

(29) I + l + E  + d 2 r l + 2 + € ) .  u ( r )  = Ql(d1r 

Inserting equation (29) into equation (28), we find 

& = -(I + s + +) + [( 1 + s + f,’ - 2S1]’/*, 

(30) 

where Eo and s are defined by equation (24), and b by equation (25). If we set y = 0, 
equation (30) reduces to the non-relativistic result: E = 0, d l  = 1/1 and d2 = 1/(1+ 1) 
(Au and Aharonov 1979). From equations (29) and (30), the first-order correction 
to the wavefunction is then given by 

$1 = - G ~  = -(l/Nl)(dlr’+l+S+E + d2r1+2+SC‘ e-br, 131) 

where N1 = [47~(2 + 2~)! / (2b)~’~’] ] ’ ’~  is the normalisation factor for the unperturbed 
wavefunction 40. With the known value of G I ,  we can then calculate the second-order 
energy shift with the aid of equation (17). After a lengthy calculation, we obtain 
finally for E2 

Eo(l+ s + E + 1) + Zb(1f E + 1) EO 
d2= 2 c2b2(I + E + 1)(I+ E )  ’ c b ( l + E + l ) ’  d1 = 

0?(21+2s  +2& +2)!  2b2d:[(1 + E l 2 +  I ( / +  111 
2(21+ 1)(2b)21+2E L l + s  + E + 1)(21+2s +2E + 1) 

EZ=- 

2bdld*[(I + &)(I + & + 1) + 1(1+ 111 + 
I + S + & + l  

+ d z [ ( l +  E + 1)’+1(I+ 1 ) ] + ~ )  1 ( 7 ( 2 + 2 s ) !  Eo 
c c  C 

Equation (32), in the non-relativistic limit, yields the well known result for a hydrogen 
atom in the multiple field (Dalgarno and Lewis 1955, Bell 1967, Au 1978, Au and 
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Aharonov 1979): 
E2 = 42: [ (2 + 2)!(l+ 2)/l(l+ 1)22*+2]. (33) 

We note here that, in using the Klein-Gordon equation to solve the problem of a 
15-mesic atom in a 2Ah-order multiple field, the perturbation VI must be written in 
the form given by equation (22). If we set the relativistic correction factor E to be 
zero, we cannot find any solution for G1 in analytic form. It is evident from the above 
calculation that the same procedure can be used to calculate the higher-order energy 
shifts. 

In conclusion, we have extended the three-dimensional non-relativistic logarithmic 
perturbation theory to the relativistic case in which the Klein-Gordon equation is 
used. We have derived the generalised Sternheimer equations resulting from the 
Klein-Gordon equation. 'We have then calculated the second-order energy shift of a 
15-mesic atom in a 2lth-order multiple field and found that the perturbation contains 
a relativistic correction factor in the form VI = Q~r'+'P~(cos e). 
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